更多>>精华博文推荐
更多>>人气最旺专家

连丽

领域:宜宾新闻网

介绍:为了节省费用,以后我们主要以微信或者app的方式推送。...

周文王姬昌

领域:搜狐

介绍:三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com

凯发真人在线娱乐手机
本站新公告AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com
3ar | 2019-01-21 | 阅读(548) | 评论(296)
PAGE第2课时 等比数列前n项和的性质及应用课后篇巩固探究A组1.在各项都为正数的等比数列{an}中,首项a1=3,前3项和为21,则a3+a4+a5等于(  )                解析由S3=a1(1+q+q2)=21,且a1=3,得q+q2-6=0.因为q0,所以q=2.故a3+a4+a5=q2(a1+a2+a3)=22·S3=84.答案C2.已知数列{an}的前n项和Sn=an-1(a是不为零且不等于1的常数),则数列{an}(  )A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不是等差数列,也不是等比数列解析因为Sn=an-1符合Sn=-Aqn+A的形式,且a≠0,a≠1,所以数列{an}一定是等比数列.答案B3.已知{an}是等比数列,a1=1,a4=,则a1a2+a2a3+…+anan+1等于((1-4-n)(1-2-n)C.(1-4-n)D.(1-2-n)解析设公比为q,∵a4a1=q3=∵a1=1,∴anan+1=1×12n-1×1×12n=故a1a2+a2a3+a3a4+…+an=2-1+2-3+2-5+…+21-2n=1=(1-4-n).答案C4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:一座七层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(  )盏盏盏盏解析设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a(1-27答案B5.已知一个等比数列共有3m项,若前2m项之和为15,后解析由已知S2m=15,S3m-Sm=60,又(S2m-Sm)2=Sm(S3m-S2m)=Sm(Sm+60-S2m),解得Sm=3,所以S3m答案A6.在各项均为正数的等比数列{an}中,a1=2,a2,a4+2,a5成等差数列,Sn是数列{an}的前n项和,则S10-S4=   .解析依题意有2(a4+2)=a2+a5,设公比为q,则有2(2q3+2)=2q+2q4,解得q=2.于是S10-S4=2(1-答案20167.已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2018=.解析∵an+1·an=2n(n∈N*),a1=1,∴a2=2,a3=2.又an+2·an+1=2n+1,∴an+2∴数列{an}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.∴S2018=(a1+a3+…+a2017)+(a2+a4+…+a2018)=2=3·21009-3.答案3·21009-38.已知一件家用电器的现价是2000元,如果实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为%,并按复利计算,那么每期应付款   元.(参考数据:≈,≈,≈,≈)解析设每期应付款x元,第n期付款后欠款An元,则A1=2000(1+)-x=2000×,A2=(2000×)×=2000×,……A12=2000×(++…+1)x,因为A12=0,所以2000×(++…+1)x=0,解得x=2即每期应付款175元.答案1759.在等差数列{an}中,a2+a7=-23,a3+a8=-29.(1)求数列{an}的通项公式;(2)设数列{an+bn}是首项为1,公比为|a2|的等比数列,求{bn}的前n项和Sn.解(1)设等差数列{an}的公差为d,依题意得a3+a8-(a2+a7)=2d=-6,从而d=-3.所以a2+a7=2a1+7d=-23,解得a1=-1所以数列{an}的通项公式为an=-3n+2.(2)由(1)得a2=-4,所以|a2|=4.而数列{an+bn}是首项为1,公比为4的等比数列.所以an+bn=4n-1,即-3n+2+bn=4n-1,所以bn=3n-2+4n-1,于是Sn=[1+4+7+…+(3n-2)]+(1+4+42+…+4n-1)=n(10.导学号04994050已【阅读全文】
AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com
tzq | 2019-01-21 | 阅读(638) | 评论(622)
由于用户账户关联用户信用信息,仅当有法律明文规定、司法裁定或经阿里巴巴同意,并符合阿里巴巴中国站规则规定的账户转让流程的情况下,用户可进行账户的转让。【阅读全文】
4xp | 2019-01-21 | 阅读(975) | 评论(134)
;(二)管廊施工方式;2.非开挖施工:(1)暗挖适用于:①管廊穿越现状道路,不能断交施工的情况;②管廊与现状重要管线交叉,管线无法切改的情况;(2)盾构适用于老城区内地上地下障碍物较多,不能采用传统明开挖施工的情况,如:穿越铁路编组站、古树木、存在难以拆迁的建筑、难以切改的现状管线等情况。【阅读全文】
p4u | 2019-01-21 | 阅读(597) | 评论(31)
PAGE第2课时 等比数列前n项和的性质及应用课后篇巩固探究A组1.在各项都为正数的等比数列{an}中,首项a1=3,前3项和为21,则a3+a4+a5等于(  )                解析由S3=a1(1+q+q2)=21,且a1=3,得q+q2-6=0.因为q0,所以q=2.故a3+a4+a5=q2(a1+a2+a3)=22·S3=84.答案C2.已知数列{an}的前n项和Sn=an-1(a是不为零且不等于1的常数),则数列{an}(  )A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不是等差数列,也不是等比数列解析因为Sn=an-1符合Sn=-Aqn+A的形式,且a≠0,a≠1,所以数列{an}一定是等比数列.答案B3.已知{an}是等比数列,a1=1,a4=,则a1a2+a2a3+…+anan+1等于((1-4-n)(1-2-n)C.(1-4-n)D.(1-2-n)解析设公比为q,∵a4a1=q3=∵a1=1,∴anan+1=1×12n-1×1×12n=故a1a2+a2a3+a3a4+…+an=2-1+2-3+2-5+…+21-2n=1=(1-4-n).答案C4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:一座七层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(  )盏盏盏盏解析设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a(1-27答案B5.已知一个等比数列共有3m项,若前2m项之和为15,后解析由已知S2m=15,S3m-Sm=60,又(S2m-Sm)2=Sm(S3m-S2m)=Sm(Sm+60-S2m),解得Sm=3,所以S3m答案A6.在各项均为正数的等比数列{an}中,a1=2,a2,a4+2,a5成等差数列,Sn是数列{an}的前n项和,则S10-S4=   .解析依题意有2(a4+2)=a2+a5,设公比为q,则有2(2q3+2)=2q+2q4,解得q=2.于是S10-S4=2(1-答案20167.已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2018=.解析∵an+1·an=2n(n∈N*),a1=1,∴a2=2,a3=2.又an+2·an+1=2n+1,∴an+2∴数列{an}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.∴S2018=(a1+a3+…+a2017)+(a2+a4+…+a2018)=2=3·21009-3.答案3·21009-38.已知一件家用电器的现价是2000元,如果实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为%,并按复利计算,那么每期应付款   元.(参考数据:≈,≈,≈,≈)解析设每期应付款x元,第n期付款后欠款An元,则A1=2000(1+)-x=2000×,A2=(2000×)×=2000×,……A12=2000×(++…+1)x,因为A12=0,所以2000×(++…+1)x=0,解得x=2即每期应付款175元.答案1759.在等差数列{an}中,a2+a7=-23,a3+a8=-29.(1)求数列{an}的通项公式;(2)设数列{an+bn}是首项为1,公比为|a2|的等比数列,求{bn}的前n项和Sn.解(1)设等差数列{an}的公差为d,依题意得a3+a8-(a2+a7)=2d=-6,从而d=-3.所以a2+a7=2a1+7d=-23,解得a1=-1所以数列{an}的通项公式为an=-3n+2.(2)由(1)得a2=-4,所以|a2|=4.而数列{an+bn}是首项为1,公比为4的等比数列.所以an+bn=4n-1,即-3n+2+bn=4n-1,所以bn=3n-2+4n-1,于是Sn=[1+4+7+…+(3n-2)]+(1+4+42+…+4n-1)=n(10.导学号04994050已【阅读全文】
efh | 2019-01-21 | 阅读(301) | 评论(545)
外公的身子一半干一半湿是因为伞倾斜到我这边,他的身子一半暴露在雨中,被雨淋湿了。【阅读全文】
yf3 | 2019-01-20 | 阅读(751) | 评论(751)
备注:按照流程,要召开2个党员大会,1个支部委员会。【阅读全文】
tuz | 2019-01-20 | 阅读(921) | 评论(554)
PAGE第2课时 等比数列前n项和的性质及应用课后篇巩固探究A组1.在各项都为正数的等比数列{an}中,首项a1=3,前3项和为21,则a3+a4+a5等于(  )                解析由S3=a1(1+q+q2)=21,且a1=3,得q+q2-6=0.因为q0,所以q=2.故a3+a4+a5=q2(a1+a2+a3)=22·S3=84.答案C2.已知数列{an}的前n项和Sn=an-1(a是不为零且不等于1的常数),则数列{an}(  )A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不是等差数列,也不是等比数列解析因为Sn=an-1符合Sn=-Aqn+A的形式,且a≠0,a≠1,所以数列{an}一定是等比数列.答案B3.已知{an}是等比数列,a1=1,a4=,则a1a2+a2a3+…+anan+1等于((1-4-n)(1-2-n)C.(1-4-n)D.(1-2-n)解析设公比为q,∵a4a1=q3=∵a1=1,∴anan+1=1×12n-1×1×12n=故a1a2+a2a3+a3a4+…+an=2-1+2-3+2-5+…+21-2n=1=(1-4-n).答案C4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:一座七层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(  )盏盏盏盏解析设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a(1-27答案B5.已知一个等比数列共有3m项,若前2m项之和为15,后解析由已知S2m=15,S3m-Sm=60,又(S2m-Sm)2=Sm(S3m-S2m)=Sm(Sm+60-S2m),解得Sm=3,所以S3m答案A6.在各项均为正数的等比数列{an}中,a1=2,a2,a4+2,a5成等差数列,Sn是数列{an}的前n项和,则S10-S4=   .解析依题意有2(a4+2)=a2+a5,设公比为q,则有2(2q3+2)=2q+2q4,解得q=2.于是S10-S4=2(1-答案20167.已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2018=.解析∵an+1·an=2n(n∈N*),a1=1,∴a2=2,a3=2.又an+2·an+1=2n+1,∴an+2∴数列{an}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.∴S2018=(a1+a3+…+a2017)+(a2+a4+…+a2018)=2=3·21009-3.答案3·21009-38.已知一件家用电器的现价是2000元,如果实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为%,并按复利计算,那么每期应付款   元.(参考数据:≈,≈,≈,≈)解析设每期应付款x元,第n期付款后欠款An元,则A1=2000(1+)-x=2000×,A2=(2000×)×=2000×,……A12=2000×(++…+1)x,因为A12=0,所以2000×(++…+1)x=0,解得x=2即每期应付款175元.答案1759.在等差数列{an}中,a2+a7=-23,a3+a8=-29.(1)求数列{an}的通项公式;(2)设数列{an+bn}是首项为1,公比为|a2|的等比数列,求{bn}的前n项和Sn.解(1)设等差数列{an}的公差为d,依题意得a3+a8-(a2+a7)=2d=-6,从而d=-3.所以a2+a7=2a1+7d=-23,解得a1=-1所以数列{an}的通项公式为an=-3n+2.(2)由(1)得a2=-4,所以|a2|=4.而数列{an+bn}是首项为1,公比为4的等比数列.所以an+bn=4n-1,即-3n+2+bn=4n-1,所以bn=3n-2+4n-1,于是Sn=[1+4+7+…+(3n-2)]+(1+4+42+…+4n-1)=n(10.导学号04994050已【阅读全文】
ikb | 2019-01-20 | 阅读(230) | 评论(929)
总体可以看出,在经济危机的情况下,我国造纸行业仍然保持较高的增长速度。【阅读全文】
AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com,AM8.COm www.hh-hie.com
2xy | 2019-01-20 | 阅读(272) | 评论(923)
在我国,随着国内纸张需求推动产能的迅速扩张,原材料需求量快速增长,我国造纸原料结构,也以由非木材草类浆料逐步转到以木浆为主的战略上,目前我国原木浆使用比例已达到22%rn。【阅读全文】
lxt | 2019-01-19 | 阅读(533) | 评论(181)
主体:分析成绩缺憾,总结经验教训。【阅读全文】
3xy | 2019-01-19 | 阅读(866) | 评论(548)
tōucǎibáiliánhuí小娃小,xiǎowáchēnɡxiǎotǐnɡ撑艇偷不解藏踪迹,不解:不知道;不懂得踪迹:指被小船划开的浮萍句意:他还不懂得怎样隐藏划船留下的痕迹第三句一道开。【阅读全文】
z3j | 2019-01-19 | 阅读(912) | 评论(785)
答案提示:罗斯福新政对我国社会发展有哪些有益的启示?本节知识结构罗斯福新政背景内容措施整顿财政金融体系复兴工业调整农业政策社会救济与公共工程经济危机和政治危机胡佛反危机措施的失败影响使美国度过了经济大危机缓和了美国的社会矛盾开创了国家干预经济的新模式影响深远.迎来了国家垄断资本主义时期特点国家加强对经济的干预**我们知道:股市崩溃了。【阅读全文】
8rd | 2019-01-19 | 阅读(97) | 评论(714)
他作诗也只求明白诚恳,不排不典;他的诗是散文化的。【阅读全文】
cop | 2019-01-18 | 阅读(827) | 评论(725)
坚持把学习放在第一位,切实提高自身素质。【阅读全文】
pws | 2019-01-18 | 阅读(480) | 评论(117)
邵旭还呼吁社会各界协同帮助残疾人融入社会生活,为残疾人掌握专业技能和实现就业提供支持。【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2019-01-21

w66历来国际 利来娱乐城 利来国际AG 利来国际ag国际厅 利来国际w66客服
利来国际网站 利来国际app旗舰厅 利来国际w66备用 利来国际最给利的老牌最新 国际利来ag厅
利来国际 利来老牌 利来国际最给力的老牌 利来娱乐国际 利来娱乐国际
利来娱乐网址 利来国际w66平台 利来国际w66 利来国际老牌博彩 利来国际W66
亳州市| 凤庆县| 连平县| 仁化县| 宣汉县| 玉门市| 诸暨市| 社旗县| 固安县| 万全县| 宜州市| 桃源县| 克什克腾旗| 潍坊市| 望都县| 舞钢市| 延边| 高碑店市| 改则县| 庄浪县| 改则县| 志丹县| 江山市| 贵州省| 丁青县| 莫力| 通河县| 河曲县| 平阴县| 屯留县| 奉新县| 江北区| 新野县| 五常市| 阿城市| 灌阳县| 江永县| 页游| 峨眉山市| 稻城县| 定南县| http://m.12038531.cn http://m.46173879.cn http://m.91420195.cn http://m.14625131.cn http://m.17129442.cn http://m.90077877.cn